



## Department of AERONAUTICAL ENGINEERING



## SOLID MECHANICS (R22A2108) COURSE COVERAGE SUMMARY

Prepared by: G Sai Sathyanarayana Assistant Professor Department of ANE sathyanarayana@mrcet.ac.in

## B.TECH II – II SEMESTER - COURSE COVERAGE SUMMARY SUBJECT: Solid Mechanics (R22A2108)

| UNIT | TITLE OF THE UNIT                      | TOPIC OF THE UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAME OF THE TEXT<br>BOOK                                                 | CHAPTER<br>NO. | PAGE<br>NO. |
|------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------|-------------|
| 1    | Analysis of stress                     | Introduction to Solid Mechanics –<br>Basic Concepts, Types of Stress,<br>General State of Stress at a Point,<br>State of stress at a point,<br>Complimentary Shear stresses,<br>Stresses on Oblique planes,<br>Materials Subjected to pure shear,<br>Material subjected to two mutually<br>perpendicular direct stresses,<br>Material subjected to combined<br>direct and shear stresses, Principal<br>plane inclination in terms of<br>associated principal stress,<br>graphical solution | Strength of<br>MaterialsbyRS<br>Khurmi,<br>S Chand and<br>company Ltd    | 7              | 108-<br>147 |
| 2    | Members Subjected<br>to Flexural Loads | Geometric Forms of beams,<br>Classifications of beams, statistically<br>determinate and Indeterminate<br>Beams, Concept of Shear Force and<br>bending moment in beams, Basic<br>Relationship between the Rate of<br>Loading, Shear Force and Bending<br>Moment Diagrams, Simple Bending<br>theory and Derivation<br>Of flexural equation.                                                                                                                                                  | Strength of Materials<br>by RS Khurmi,<br>S Chand and<br>company Ltd     | 13             | 286-<br>343 |
| 3    | Deflection of beams                    | For a simply supported and Cantilever<br>beam with problems using Double<br>Integration method and Macaulay's<br>method. Concept of overhanging,<br>fixed and Continuous beams                                                                                                                                                                                                                                                                                                             | Strength of Material<br>by RS Khurmi,<br>S Chand and<br>company Ltd      | 16             | 383-<br>404 |
| 4    | Elastic stability of<br>Columns        | Theories of Elastic Failure, Euler's<br>theory, Critical load determination of<br>columns with different end<br>constraints, Rankine and Johnson<br>Formulae.<br>Concepts of beam- column buckling                                                                                                                                                                                                                                                                                         | Strength of Materials<br>by RS Khurmi,<br>S Chand and<br>company Ltd     | 34             | 795-<br>820 |
| 5    | Theories of failures                   | Von-mises theory, octahedral shears<br>distortion energy theory, Maximum<br>principle elastic strain theory,<br>Maximum principle shear strain<br>theory, Maximum shear stress theory                                                                                                                                                                                                                                                                                                      | Strength of Materials<br>by S Ramamrutam,<br>Dhanpat Rai<br>Publications | 14             | 706-<br>726 |